772 research outputs found

    Adaptive Domain Generalization via Online Disagreement Minimization

    Full text link
    Deep neural networks suffer from significant performance deterioration when there exists distribution shift between deployment and training. Domain Generalization (DG) aims to safely transfer a model to unseen target domains by only relying on a set of source domains. Although various DG approaches have been proposed, a recent study named DomainBed, reveals that most of them do not beat the simple Empirical Risk Minimization (ERM). To this end, we propose a general framework that is orthogonal to existing DG algorithms and could improve their performance consistently. Unlike previous DG works that stake on a static source model to be hopefully a universal one, our proposed AdaODM adaptively modifies the source model at test time for different target domains. Specifically, we create multiple domain-specific classifiers upon a shared domain-generic feature extractor. The feature extractor and classifiers are trained in an adversarial way, where the feature extractor embeds the input samples into a domain-invariant space, and the multiple classifiers capture the distinct decision boundaries that each of them relates to a specific source domain. During testing, distribution differences between target and source domains could be effectively measured by leveraging prediction disagreement among source classifiers. By fine-tuning source models to minimize the disagreement at test time, target domain features are well aligned to the invariant feature space. We verify AdaODM on two popular DG methods, namely ERM and CORAL, and four DG benchmarks, namely VLCS, PACS, OfficeHome, and TerraIncognita. The results show AdaODM stably improves the generalization capacity on unseen domains and achieves state-of-the-art performance.Comment: 11 pages, 4 figure

    Adv3D: Generating 3D Adversarial Examples in Driving Scenarios with NeRF

    Full text link
    Deep neural networks (DNNs) have been proven extremely susceptible to adversarial examples, which raises special safety-critical concerns for DNN-based autonomous driving stacks (i.e., 3D object detection). Although there are extensive works on image-level attacks, most are restricted to 2D pixel spaces, and such attacks are not always physically realistic in our 3D world. Here we present Adv3D, the first exploration of modeling adversarial examples as Neural Radiance Fields (NeRFs). Advances in NeRF provide photorealistic appearances and 3D accurate generation, yielding a more realistic and realizable adversarial example. We train our adversarial NeRF by minimizing the surrounding objects' confidence predicted by 3D detectors on the training set. Then we evaluate Adv3D on the unseen validation set and show that it can cause a large performance reduction when rendering NeRF in any sampled pose. To generate physically realizable adversarial examples, we propose primitive-aware sampling and semantic-guided regularization that enable 3D patch attacks with camouflage adversarial texture. Experimental results demonstrate that the trained adversarial NeRF generalizes well to different poses, scenes, and 3D detectors. Finally, we provide a defense method to our attacks that involves adversarial training through data augmentation. Project page: https://len-li.github.io/adv3d-we

    Rethinking Rendering in Generalizable Neural Surface Reconstruction: A Learning-based Solution

    Full text link
    Generalizable neural surface reconstruction techniques have attracted great attention in recent years. However, they encounter limitations of low confidence depth distribution and inaccurate surface reasoning due to the oversimplified volume rendering process employed. In this paper, we present Reconstruction TRansformer (ReTR), a novel framework that leverages the transformer architecture to redesign the rendering process, enabling complex photon-particle interaction modeling. It introduces a learnable meta-ray token and utilizes the cross-attention mechanism to simulate the interaction of photons with sampled points and render the observed color. Meanwhile, by operating within a high-dimensional feature space rather than the color space, ReTR mitigates sensitivity to projected colors in source views. Such improvements result in accurate surface assessment with high confidence. We demonstrate the effectiveness of our approach on various datasets, showcasing how our method outperforms the current state-of-the-art approaches in terms of reconstruction quality and generalization ability.Comment: 18 pages, 11 Figures, Our code will be released at https://github.com/YixunLiang/ReT

    A WOA-based optimization approach for task scheduling in cloud Computing systems

    Get PDF
    Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks

    HyperThumbnail: Real-time 6K Image Rescaling with Rate-distortion Optimization

    Full text link
    Contemporary image rescaling aims at embedding a high-resolution (HR) image into a low-resolution (LR) thumbnail image that contains embedded information for HR image reconstruction. Unlike traditional image super-resolution, this enables high-fidelity HR image restoration faithful to the original one, given the embedded information in the LR thumbnail. However, state-of-the-art image rescaling methods do not optimize the LR image file size for efficient sharing and fall short of real-time performance for ultra-high-resolution (e.g., 6K) image reconstruction. To address these two challenges, we propose a novel framework (HyperThumbnail) for real-time 6K rate-distortion-aware image rescaling. Our framework first embeds an HR image into a JPEG LR thumbnail by an encoder with our proposed quantization prediction module, which minimizes the file size of the embedding LR JPEG thumbnail while maximizing HR reconstruction quality. Then, an efficient frequency-aware decoder reconstructs a high-fidelity HR image from the LR one in real time. Extensive experiments demonstrate that our framework outperforms previous image rescaling baselines in rate-distortion performance and can perform 6K image reconstruction in real time.Comment: Accepted by CVPR 2023; Github Repository: https://github.com/AbnerVictor/HyperThumbnai
    corecore